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I. INTRODUCTION

This final report is for work carried out under Grant No. NCC2-5072during

the period from August 1, 1994to September30, 1996.

The objective of this study was to modify an existing parallel particle code,

based on the direct simulation Monte Carlo (DSMC) method, to include a Navier-

Stokes (NS) calculation so that a hybrid solution could be developed. The former was

developed by McDonald, Fallavollita and Dahlby at Stanford University for use on

the Intel Gamma, Delta, and Paragon computers. The need for a hybrid DSMC/NS

solution arises, for example, in situations in which a cold blunt body is placed in a

high enthalpy flow. The very high stagnation temperature and pressure produced,

together with the cold body, cause the gas density near the surface to become quite

high; the density ratio across the thermal layer can be 30 or greater. Because of

the high density and the large gradients present, use of the DSMC method alone

becomes computationally costly. The aim was to make use of a Navier-Stokes code

to handle all near-continuum sub-regions, such as the thermal layer or a boundary

layer in general.

In carrying out the work, it was determined that the following five issues had to

be addressed before extensive program development for 3D capability was pursued:

(i) find a set of one-sided kinetic fluxes that are fully compatible with the DSMC

method, so that they may be used in interfacing the two solution schemes;

(ii) develop a finite volume scheme that makes use of these one-sided kinetic fluxes;

( iii) make use of the one-sided kinetic fluxes together with DSMC type boundary

conditions at a material surface so that velocity slip and temperature slip arise

naturally for near-continuum conditions;

(iv) find a suitable sampling scheme so that the values of the one-sided fluxes pre-

dicted by the NS solution at an interface between the two domains can be

converted into the correct distribution of particles to be introduced into the

DSMC domain; and

(v) carry out a suitable number of tests to confirm that the developed concepts are

valid, individually and in concert for a hybrid scheme.



The first three issueswere addressedby S. Chou and elegantly handledin his

Ph.D. thesis [1], and in a follow-on paperwhich wasrecently acceptedfor publication

in the Journal for ComputationalPhysics[2]. It becamepossibleto addressthe fourth

issuedirectly by making useof the analytic expressionsdevelopedby Chou, and its

implementation is discussedin the two thesesby D. Dahlby [3]andby T. Lou [4]. The
fifth issuewasstudied by Lou [4]and by Lou et al. [5] for one-dimensionalgeometries,

and by Dahlby [3] and Duttweiler [7] for two dimensionalgeometries.Presentations
of the work weremade by Dahlby [6]and most recently by Duttweiler [7]. All of the

listed work wassupported, to varying degrees,by the grant.

Becausemuch of the work has beenreported in student thesesand represents

many pagesof text, only a short reviewof the relevant topics, which can be usedas

a guide to the publications themselves,will be given. On the other hand, the two

papers[2] and [5]haveyet to appearasarchivejournal publications and socopiesare

attached asAppendicesA and B.

II. Split Kinetic Fluxes, Numerical Studies

Starting with the kinetic-theory definition for the split kinetic fluxes, their

derivation and developmentfor the Chapman-Enskogvelocity distribution function

were carried out by Chou [1], and a listing of the resultant set of relations for the

split fluxes is givenasEqs.(38)-(44) in Appendix A. The appropriateboundarycondi-

tions for the split fluxesare describedby Eqs. (62)-(68) in the sameappendix. These

boundary conditions are flux-type boundary conditions and therefore lead to both

temperature slip and velocity slip at a material surface. A versionof the monotone

upstream-centeredschemefor conservationlaws (MUSCL) wasusedin applying the

split kinetic flux relations to obtain numerical solutionsfor the NSequationsfor var-

ious test flows,as describedon page11of Appendix A. Numerical testson the split

kinetic fluxes werecarriedout for the highly viscousand heat conductingflow found

in a normal shock waveprofile (App. A, Figs. 5 and 6) and for the opposite limit

representedby the Euler flow in the shock tube problem (Figs. 7 and 8). As shown

in the figures, comparisons were made with numerical solutions to the Navier-Stokes

equations based on the established methods of Roe and Jameson (SLIP2). Addition-

ally, tests involving a solid surface were used to study the thermal boundary layer
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found near an impulsively started piston (App. A, Figs. i and 9), which leads to

temperature slip, alongwith tests involving the viscous,heat conducting flow found

in the slider-plateor lid-driven cavity problem (Figs. 10- 12), which introducesboth

temperature and velocity slip. As seenin the figures,all comparisonsare uniformly

good.

III. Confirmation of Split Kinetic Fluxes and Slip

Becausethe split kinetic fluxes arederived for the nonequilibrium state repre-

sentedby the Chapman-Enskogvelocity distribution function, it is expectedthat the
valuespredicted by the analytic expressionsshouldagreewith resultsof simulations

using the direct simulation Monte Carlo (DSMC) method, as long as the Knudsen
number, velocity gradients,and temperaturegradientsaresuitably small in the sim-
ulated flow. In addition, becausethe boundary conditions usedin the two methods

are physically identical, one would expectgood agreementfor all slip valuesas well.

Studiesof this hypothesiswerecarried out by Dahlby [3]and by Lou [4],and a paper

summarizingthe work [5] is reproducedasAppendix B. The testswereconductedfor

conditions of flow (Knudsennumberand dimensionlesstime) in which both methods

(DSMC and NS) alonewere capableof providing the physically correct prediction,

and thus should agree.Three test caseswerestudied.

The first caseconsideredan impulsively started piston in a stationary equilib-

rium gas,and confirmation that the temperatureand density profiles in the thermal

layer agreeafter roughly 10 collision times is shownin Figs. 2 and 3 in Appendix
B. Becausethe numerical valueof temperatureslip for this caseis small and on the

order of 10%, and becausesampling in the DSMC method is severelylimited in a

nonsteadyproblem wheretime averagingin not permitted, accurateDSMC values
are difficult to obtain. Still, the comparisonshownin Fig. 4 of Appendix B is re-

markably good. The split fluxes for mass,momentumand energywere recordedat
the wall in the DSMC method by monitoring the particles that crossfrom the gas

into the wall regionduring a tingestep. Comparisonsbetweentheory and simulation

arepresentedin Figs. 5 and 6, showingoutstanding agreementfor the split fluxes.

The secondtest consideredan impulsivelystarted flat plate moving parallel to

its surfacein a stationary equilibrium gas. Herethe nonequilibrium is causedby the



velocity field and to a lesserdegreeby the temperature field. The velocity slip at

the plate surface is displayedin Fig. 8 of Appendix B for the two methodsshowing

remarkably good agreement. Likewise, the split fluxes are given in Figs. 9 and 10

offering equally good agreement.

The third test consideredthe steadystate solution for the slider plate problem,

wherea two-dimensionalsquarecavity filled with a gas is closedby a moving plate.

The mostimpressivecomparisonsaregivenby the tangential velocity,Fig. 13,andthe

split fluxes,Fig. 14,at the surfaceof the cavity. Together,thesethree testsverify that

the analytic expressionsweareusingfor the split kinetic fluxesare in full agreement

with resultsof simulationsusing the direct simulation Monte Carlo method.

IV. Sampling from the Chapman-Enskog Distribution

To implement a DSMC/NS hybrid schemebasedon the passingof split-fluxes,
one must be able to usethe data from the NS solution (at the interface and at each

time step) to createa proper sampleof particlesfor insertion into the DSMC region.

This collection of particles must carry the correct mass,momentum,and energyand

in order to do somust representa samplefrom a weightedChapman-Enskogvelocity

distribution. A straightforwardselection/rejectionschemeis far too computationally

costly, for a complex 3D function suchasthe CE distribution, and a lessexpensive

method must be found. Conceptually,a superiorprocedurecanbe understoodby a

review of Fig. 1, wherethe equivalent2D problem is considered.Taking Cx and Cy

to be the two components of molecular velocity and assuming we are interested in the

positive directed flux along the x-axis, then one need only consider the portion of the

velocity distribution function shown in the first row. However, if we are interested

in the distribution that makes up the one-way flux, then we need the product of Cx

and f(Cx, Cy) which is the weighted distribution shown in the second row. If this

distribution is integrated over the entire Cx domain, one then obtains a probability

density that is a function of Cy alone, namely the marginal distribution, as shown

in the dashed plane of the mesh plot of the third row. On creating the indefinite

integral of this function, as displayed in the right-hand column, one obtains the

probability that the y-component of the molecular velocity is smaller than some Cy

for all values of Cx. This function can then be used to randomly pick a value of Cy



for a sample particle by first selecting a random number 0 _< R1 _< 1 and then finding

the corresponding value of C'y from the plot. This value for Cy is then used in the

distribution shown in the second row to obtain a function of Cx alone, as depicted

by the dashed plane in the mesh plot of the fourth row.

Cy Cx Cx

Cy Cx Cx

._ o.5t

Cy Cx Cy

ol/
Cy Cx Cx

Fig. 1. Procedure for selecting a pair of random velocities Cx

and Cy, from the weighted Chapman-Enskog distribution.

On creating the indefinite integral of this function, as displayed in the right-hand

column, one obtains the probability that the x-component of the molecular velocity

is smaller than some Cz for the particular value of C'y selected. This function can

then be used to randomly pick a value of Cz for the sample particle, by first selecting

a random number 0 < R2 _< 1 and then finding the corresponding value of Cx from



the plot. In summary,wepick two random numbersR1 and R2 to select two random

velocities Cx and Cy for our first sample particle; and these steps are then repeated

for all particles to be sampled.

A typical sample for 200 particles is shown in Fig. 2, superposed on a contour

plot of the weighted distribution itself, verifying the effectiveness of the procedure.

We are able to use this procedure because all of the analytic expressions for the

integrals needed, both definite and indefinite, were previously obtained by Chou in

the process of developing his analytic results for the split kinetic fluxes.

0 0

o

CX

Pig. 2. A representative example for creating a sample of 200

particles using the procedure outlined in Fig. 1.

Although the method itself represents a general mathematical concept that is not new,

the ability to carry it out for the Chapman-Enskog distribution is new because of the

availability of Chou's analytic results. Even though the sampling procedure outlined

above is considerably more efficient than the simple selection/rejection scheme, it is

still fairly intensive and steps are being taken to reduce the computational effort still

further. Some of these steps were taken by Duttweiler in creating a very efficient C

program to implement the algorithm. Duttweiler's coding was used by Dahlby and

by Lou in their respective thesis work.



V. Testing of a Flux-Based Hybrid Scheme

Considerabletesting of a flux-basedhybrid schemewascarried out by Lou for

two nonsteadyone-dimensionalproblemsand by Dahlby for a steadytwo-dimensional

problem. The first problemstudied by Lou wasthe impulsively started piston, where
the interfacefor the hybrid wasplacedat a fixed position 12.5meanfreepath lengths

aheadof the piston surface.Someof his results (takenfrom his thesis[4]) for the case

of a monatomicgasand Mpiston = 1.0 are shown in Fig. 3.

PISTON, Time = 4.635

3 DSMC
o

22

30 20

NS

i

10 0

_3

i,
l
3O

Time = 20.86

20 10 0

Time = 37.08

4

1 . i

30 20 10 0
X/Lamda0

Fig. 3. A hybrid solution for an impulsively started piston,

with the piston surface on the right, and the interface (dotted

vertical line) at 12.5 mean free path lengths ahead of the piston.

Dimensionless time is based on the upstream collision time.

The objective was to select conditions and a time scale for which one could observe
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the wavefront as it passedthrough the interface, to seeif any imperfectionsappear

at the point where the two solutionsare joined. Far upstream and far downstream
from the shock wavethe conditions are essentiallyat equilibrium and no difficulty

shouldbeexpected,but whenthe shockwavepassesthe interfacelocation then severe

nonequilibrium conditions arepresent,giving the matching algorithm its most severe

test (intermediate time shown). Also shown in the figure, as a dashedcurve, is a
pure NS solution which is hardly distinguishable from the hybrid, indicating that

the matching algorithm seemsto be working rather well. For the later time shown,

the hybrid arrangementis optimum for this problem, in that the shockwaveprofile

itself can best be modeled by the DSMC method while the thermal layer at the

piston surface can best be handled by the NS solution. The density profile for the

intermediate time is quite similar in many respects to the density profile along the

stagnation streamline in a supersonic flow past a blunt cold body, a situation of

interest to us because it becomes a very useful application of the hybrid scheme.

The second problem studied by Lou was the impulsively started flat plate, where

the interface for the hybrid was placed at a fixed position 10 mean free path lengths

above the plate surface. Some of his results (taken from his thesis [4]) tot the case of a

monatomic gas and Mpiat_ = 1.0 are shown in Fig. 4. Here again, the objective was to

select conditions and a time scale for which one could observe the boundary layer as

it grew and passed thought the interface, to see if any imperfections appeared at the

point where the two solutions join. In this case the nonequilibrium was principally the

result of stress with heat flux playing a lesser role. As can be seen, the matching again

appears to be working very well. In this case it is also clear that the flux boundary

conditions used in the KFVS method for the NS equations is accounting for velocity

slip at the plate surface. The slip value is initially large and then diminishes as time

progresses, reaching a level of about 10% for the latest time given.

For both the impulsively started piston and the impulsively started flat plate,

the conditions were chosen so that a pure NS solution and a pure DSMC solution

would predict the same results. This is possible as long as the Knudsen number is

sufficiently small and the nonequilibrium is not too large. Because of this, we were

free to place the interface at most any position in the hybrid solution (positioning was

not critical); and we were always in a position to use either pure solution as a reference

in judging the hybrid. In Lou's thesis [4] many of these comparisons are made, even



with a reversedDSMC/NS orientation. Also, in both casesit wasnecessaryto study

extremely short times in order for the nonequilibrium to be large, sothat the hybrid
schemecould be fully tested. Typically, a time of about 10 to 20 collision times was

used,clearly a very short time in terms of physical processes.

FLAT PLATE, Tune = 6.18
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Fig. 4. A hybrid solution for an impulsively started flat plate,

with the plate surface at the bottom, and the interface (indi-

cated by the dotted horizontal line) at 10 mean free path lengths

above the plate. Dimensionless time is based on the freestream

collision time.

The third problem studied was the lid-driven cavity problem, or the slider plate

problem. Large nonequilibrium develops in the two corners between the lid and the



cavity wall, and consequently,it is reasonableto assignthe DSMC method a small

strip alongsidethe lid, including the two corners;and then allow NS to handle the
rest, where the degreeof nonequilibrium is considerablysmaller. The reasonfor

this choice is that only DSMC alonecan handle conditions where velocity slip and

temperature slip may be large, and wherethe physical scalein the two cornersmay

effectively lead to rarefied conditions. The hybrid solution for the pressurefield is

shownin Fig. 5, wherethe hybrid interface wasplacedat 50%of the depth of the
cavity which can be visually locatedby the changein 'texture' of the surface.

p/Po

3.:

2:t

50
60

Fig. 5. A hybrid solution for the lid-driven cavity problem

showing the pressure field for Kn = 0.01, Mild = 1.0 and a

monatomic gas. The shearing lid is on the far wall as indicated.

Because Dahlby carried out this study [3] at a fairly early point in our work, before we

fully developed the means for sampling from the Chapman-Enskog velocity distribu-

tion function, he chose to place the interface at a position in the flow for which it was

assured that nonequilibrium would be small, namely, the 50% location as shown. In

this location, one is able to use the much simpler Maxwellian distribution, for which

the proper sampling scheme is well known and straightforward. This test confirmed

the intuitive view that there is a direct one-to-one correspondence between the degree

of nonequilibrium present in the flow and the type of velocity distribution function

needed to carry out the matching at a hybrid interface.

10



Becauseof the 'spiking' of the pressurefield in the two corners,oneis not able

to tell whether the well-known singularity in stressand heat flux that appearsfor

the no-slip solution of the NS equationshasbeeneliminated. Shownin Fig. 6 is the

u-componentof the velocity, the componentthat lies parallel to the lid itself. In this

case,the lid is locatedon the near faceand movesfrom left to right in the figure.

U/C o

i i ....... i.

6O

Fig. 6. A hybrid solution for the lid-driven cavity problem

showing the component of the velocity lying parallel to the lid,

for I(n = 0.01, Mlid= 1.0 and a monatomic gas. The shearing

lid is on the near face as indicated.

The presence of velocity slip, seen in the figure as the difference between the plotted

curve at the lid and the line at -1.0 indicating the Mach number of the lid, seems

to have completely removed the infinite velocity gradient that otherwise appears in

the two corners of the flow, and which leads to a singularity in stress when using the

no-slip boundary condition.

VI. Capability for 2D/3D Simulations

Even though the lid-driven cavity problem represents two-dimensional flow,

the interface used, consisting of a straight line, makes the interfacing effectively one
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dimensionalin terms of the spatia.tphysicsassociatedwith the matching conditions.
The next step in our work was to selecta two-dimensionalproblem that required

an interface that was also two dimensional. Sucha case is shown in Fig. 7, which

represents a supersonic flow past a rectangular prism.

600 -
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20

•"" ........ 20

0

0

Fig. 7. A hybrid solution for Mach 16 flow over a rectangular

prism, with NS shown in green and DSMC shown in blue.

As this represents our first effort, the location of the interface was not positioned

properly. The forward location of the interface should not place the NS solution

(shown in green) ahead of the shock wave, but should confine it to the region closer

to the boundary layer• However, the purpose of the test was to provide the experience

needed to handle a more complex interface and to demonstrate that our overall pro-

cedure was working properly. In this case the interface is a rectangular cutout with

two sharp corners. The smooth transition seen in the figure between the NS solution

and the DSMC simulation is what we had hoped to achieve before more complex

testing was pursued. This work is being carried out by Duttweiler, as part of his

thesis research, and a very preliminary report was presented by him at the CAS_96

Workshop [7].

At an earlier stage of our work, Dahlby was able to test the upper limit of

our capability to study true 3D flows using a pure DSMC simulation. He designed

a generic SSTO vehicle body, which could be placed at an arbitrary angle of attack,
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and ran a seriesof simulationson the Intel Delta parallel supercomputer.A total of

1.1million cells, 40million particles, 512nodes,1000sampling steps,and a run time
of 110minutes wereusedin eachsimulation. Figure 8 showsanexamplefor 20° angle

of attack, free stream Mach number of 10, and a monatomic gas.

Fig. 8. Temperature distribution about a generic SSTO vehicle

at 20 ° angle of attack, Mm = 10, aad for a monatomic gas.

Less than half of the available memory was committed because of concern that poor

load balance may cause a processor to be assigned a series of spatial blocks containing

more particles than the processor had memory to store. This would cause the over-

allocated processor to report a memory error and exit the simulation, which in turn

would cause all other processors to abort the simulation as well. By using on average

only half of the available memory, there would be a negligible chance of over-Mlocating

a single processor.

Dahlby was also able to conduct a number of interesting performance studies

on our parallel code by using his generic SSTO body to represent a reasonably large

problem. In one of his studies, he chose a simulation dimension of 120x120x120 for
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1.8

a total of 1.7 million cells. This allowed him to evenly divide the simulation domain

into cubical blocks of lengths 3, 4, 5, 6, 8, and 12 cells so that different runs could

be carried out with a varying number of blocks per processor. Also, timing results

were obtained with a total of 100 sampling time steps, as opposed to real runs of

more than ten times greater. The aim was to study the effect on computation time

of the tradeoff between the time required for load balancing, the final load balance

state, and communication l_ime. When there are only a few blocks per processor then

the final load balance is poor because the apportionment of blocks is very restricted,

and when the there are a large number of small blocks then communication cost

and time to load balance become large. Figure 9 gives a summary of his findings.

The most important observation made is that the histogram for the run-time data

shows the minimum to be very broad, ranging from approximately 8 to 50 blocks

per processor. The conclusion one draws from this is that, fortunately, most any

reasonable engineering guess would turn out to be nearly optimum.

i
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Fig. 9. Relative run time on the Intel Delta as a function of

block size for the generic SSTO problem.

Considering our current capability to carry out 3D simulations with a large

number of cells and a correspondingly large number of particles, we were interested

in testing the limit of our resolution capability for a typical 2D problem. A circular

cylinder was chosen for this test using a wind tunnel dimension of 576 cells by 896
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cellsfor a total of 0.52 inillion cells; the number density was 16 particles per cell on

average for a total of 8.3 million particles. The free stream Mach number was set to

10.95, the Knudsen number to 0.02, based on the cylinder radius, and the gas was

monatomic. The temperature distribution about the cylinder is shown in Fig. 10.

Fig. 10. Temperature distribution about a circular cylinder in

a Mach 10.95 flow, monatomic gas and Kn = 0.02.

This DSMC simulation was used by Dahlby in his thesis as a reference solution in his

study of the effect of cell size on the position of the shock wave and the thickness of

the thermal boundary layer on the cylinder.

VII. DISCUSSION AND CONCLUSIONS

As shown by the following list of publications, our progress during the reporting

period has been considerable. Most of the goals outlined in the introductory discus-

sion have been met and clearly suggest that further effort along these lines could be
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productively pursued. On this basis,our ongoing work has dealt with (1) questions
related to more complexgeometriesin two and three dimensions,(2) further testing

of matching conditions for thesemore complexgeometries,(3) steps that could be
taken to further reducethe computational load representedby the sampling needed

to createnewparticles at the hybrid interface,(4) the introduction of grid refinement

in the Navier-Stokesportion of the hybrid, and (5) studies of computational time

associatedwith different approachesso that the best method canbe identified.
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APPENDIX A

Kinetic Flux-Vector Splitting for the Navier-Stokes Equations

S. Y. Chou and D. Baganoff
Department of Aeronautics and Astronautics

Stanford University, Stanford, CA 94305

(Submitted to: Journal of Computational Physics, Oct. 4, 1995; Revs: Feb. 26, May 24, 1996)

Before a hybrid scheme can be developed combining the direct simulation Monte Carlo (DSMC)
method and a Navier-Stokes (NS) representation, one must have access to compatible kinetic-split
fluxes from the NS portion of the hybrid scheme. The kinetic theory basis is given for the devel-
opment of the required fluxes from the Chapman-Enskog velocity distribution function for a simple
gas; and these are then extended to a polyatomic gas by use of the Eucken approximation. The
derived fluxes are then used to implement boundary conditions at solid surfaces that are based on
concepts associated with kinetic theory and the DSMC method. This approach is shown _o lead
to temperature slip and velocity slip as a natural outcome of the new formulation, a requirement
for use in the near-continuum regime where DSMC and NS must be joined. Several different flows,
for which solid boundaries are not present, are 'computed using the derived fluxes together with a
second-order finite-volume scheme and the results are shown to agree well with several established
numerical schemes for the NS equations.

I. INTRODUCTION

A question that frequently arises when attempting to model plume flows generated by thrusters operating in

the vacuum of space is: how to interface a numerical solution of the Navier-Stokes (NS) equations, which is most
appropriate for the high-density gas flow found inside a nozzle, with the direct simulation Monte Carlo (DSMC)

method [2], which is most appropriate for modeling the very low-density gas flow found in the outer plume? A similar
question arises for the case of a blunt body in a rarefied high-enthalpy flow, where a numerical solution of the NS

equations is often the most appropriate for handling the high-density gas layer found near the relatively cold body
surface, while the DSMC method is the most appropriate for the rarefied outer flow.

Both questions can best be understood by considering the much simpler case of an impulsively started piston in a

stationary gas, where the piston travels in a direction normal to its surface, the piston Mach number is assumed high,
and the piston temperature and gas temperature are initially equal. A NS solution for a representative case is shown

in Fig. 1, where the piston Mach number is taken to be 5.0 and the gas to be ideal and monatomic. A normal shock
wave forms ahead of the piston, the gas temperature (dashed curve) rises behind the shock and then falls as a result

of the cold piston surface (located at x/L = 1). Because of the nearly constant pressure between the shock and the

piston, the density (solid curve) rises in the thermal layer in an inverse ratio to the temperature. In this case, the
peak density is 8.2 times the density behind the shock wave. Although the DSMC method must be used to obtain
the proper shock wave profile, as is well known, it is clear that the much higher density in the thermal layer would
lead to a greatly increased DSMC simulation cost in that region, prompting consideration of a hybrid scheme, where
the DSMC method would be used to model the outer flow and the NS equations to model the thermal layer. This

concept is schematically depicted in Fig. 2.
Because the DSMC method is based on kinetic theory, the DSMC fluxes to be matched at an interface of a hybrid

solution are physical quantities: the fluxes emanating from the DSMC region F + are one-sided kinetic fluxes and the

frame of reference is an inertial frame, as indicated in Fig. 2. The flux of mass (momentum or energy) from the DSMC

side is gotten directly from the particles that cross the interface in one time step. In order to develop an effective
hybrid scheme, one must therefore address the following issues.

• The same definitions should be used for the split fluxes when matching at an interface, preferably the kinetic

theory definition of one-sided kinetic fluxes (DSMC) in an inertial frame of reference.

• As indicated by Figs. 1 and 2, considerable nonequilibrium may exist at an interface in the ibrm of heat flux
or shearing stress when considering a boundary-layer flow. Therefore, the numerical scheme chosen to interface
with DSMC must solve the NS equations; and because the DSMC method possesses characteristics of a time-

dependent finite-volume scheme, compatibility suggests the use of the same scheme for the NS portion.

• Because matching can only be carried out in the near-continuum regime, where both DSMC and NS are valid, it

is clear that velocity slip and/or temperature slip would be present at the body surface, i.e., the piston surface

in Fig. 2. Therefore, the NS solution must account for slip; the no-slip boundary condition cannot be used.



• ThenumericalschemehandlingtheNSportionmustbeshownto agreewithexistingnumericalmethodsfor
theNSequationsbeforeahybridschemeisconstructed.

ConversionoftheNSvaluesfortheone-sided kinetic fluxes at an interface into a corresponding collection of par-
ticles for insertion into the DSMC simulation must be carried out in a physically compatible and computationally

cost effective way.

Conditions must be identified that define a suitable location for placement of an interface. For example, for

moderate nonequilibrium, it is generally found that good results are obtained for DSMC simulations if the local
cell Knudsen number (local mean free path length to cell dimension) is greater than unity. To use this criterion,
questions of compatibility with the NS equations would have to be explored.

• Both the NS scheme selected and the resultant hybrid scheme created must be compared with different DSMC
solutions for complete verification.

The objective of the present study is to address and discuss the first four issues listed above; the remaining three will
be covered in follow-on reports.

Much of the groundwork for the present investigation can be found in a book by Patterson [13] and in papers

by Broadwell [4], Bird [2], Pullin [15], Prendergast & Xu [14], Mandal & Deshpande [12], and Gooch [8]. Because
we seek a formulation based on the NS equations, and because much of the previous work focused on the Euler
equations, it is appropriate to first turn to general results found in work on kinetic theory, in particular, the well-

known system of moment equations formed from the Boltzmann equation. This approach treats the equilibrium and
nonequilibrium components of the fluxes on the same footing, and the derivation itself provides the definitions along
with the justification for their use. An alternative is the separate introduction of the nonequilibrium terms at the

macroscopic level, as discussed by Macrossan & Oliver [10] and by Mallett et hi. [11], but this approach would not
directly satisfy the first and fifth condition in the above list of issues.

II. MOMENTS OF THE BOLTZMANN EQUATION

Many of the equations and concepts to be presented in this section can be found in standard work on kinetic theory,
such as Chapman & Cowling [5], Grad [9], Patterson [13], Vincenti & Kruger [20], Woods [22], and Bird [3]. We start

with the case of an ideal monatomic gas in the absence of external forces and assume the gas is sufficiently dilute for
binary collisions to dominate. For this case, the Boltzmann equations reads

0(n/) 0(nf) _ 1 (1)
0-----7- + ck Oxk [ Ot J col_'

where n is the number density, f is the velocity distribution function, c_, the molecular velocity in an inertial frame,

the repeated index k denotes a sum, and the right-hand side represents the collision integral. The moment equations
are obtained by multiplying the Boltzmann equation by any function of molecular velocity Q(cl) and integrating over
velocity space. These equations are represented by

0 0
< Q >) + < ckQ >) =

oxk

The two operators appearing in (2) are defined by

£// L< Q >= Qfdcldc2dc3
oo oo

(2)

(3)

and

?£? r'(o, lA[Q] = Q dctdc2dc3. (4)

When the arbitrary function of molecular velocity Q(ci) is chosen to be one of the five collisional invariants QINV =

rn {1, ci, c2/2}, where m is the molecular mass and c _ represents the square of the velocity magnitude, then the

corresponding moment of the collision integral is identically zero, i.e., A[Q tNv] = 0. This is a general result that



holdsfor anydistributionfunctionf and for any molecular interaction law. This selection leads to the conservation

laws for gas dynamics, which can be written in the form

O Q,UV 0 ,,,v_(n < >) + _L-k(n < ckQ >) = 0, (5)

or, when using each of the collisional invariants in turn, one obtains the set

9
o_(p) + _-(p < ck >) = 0 (6a)

uxk

(p < c_>) + O-_k(p(ckcd)= 0 (0b)

O(P _ =< d/2 >) + (p < ckd/2 >) 0, (6c)

where p =mn is the mass density.
Introduction of the thermal velocity components Ci = (ci - ui), where ui =< ci > is the mean or fluid velocity,

allows one to introduce the central moments defined by

PU -- p < CiCj >

p = Pkk/3

Tij = -Pij + PrJij

e =< C'2/2 >

qi = P < CIC2/2 >,

(7)

(8)

(9)

(lO)

(ii)

where Pij is the pressure tensor or stress tensor, p the pressure, vii is the viscous stress tensor, e is the internal energy
(translational) for a monatomic gas, and qi is the heat flux vector for a monatomic gas. The conservation laws for
gas dynamics can then be written in the familiar form

0
_(p) + _ (p,,k)= o (12a)

0 0

0-t (pui) + _ (pukui + Pki) = 0 (12b)

O [p(e+U-_)]+ 0 [puk(e+_)+Pkiui+qk] =0. (12c)0-7

If the gas is not simply a monatomic gas but has internal structure, then the above procedure must be modified.

Because the general problem includes the question of what equation replaces (1), the problem is rather difficult and
it becomes necessary to make use of a suitable approximation. One simplistic approach is to assume that all internal
molecular energy modes are in equilibrium, both internally and with the translational degrees of freedom. Thus,
the additional internal energy eint can be expressed in terms of the translational temperature T by the equilibrium
relation

(5- (13)



where R is the gas constant, and where an accounting for the additional internal energy is introduced through the
ratio of specific heats 7, and for which eint = 0 in the case of a monatomic gas.

To properly account for the amount of energy that is carried by a particle with internal structure, the energy mc'_/2

must be replaced by (mc2/2 -I- e), where e is the additional internal energy per particle, and therefore, the quantities
of interest become

Q,Nv = {m, mc,, (mc2)2 + e)}. (14)

Assuming Eq. (1) continues to hold for the extended distribution function f(ci, e) and provided the right-hand side
is interpreted in a suitable way, then an additional integral over e is formally required in applying both (3) and

(4). It is reasonable to argue, however, that the quantities in (14) must continue to be conserved in a collision, and
consequently, (4) again evaluates to zero; and thus, (5) remains unchanged.

In evaluating the left-hand side of (5) for the five different quantities in (14), identical results to those obtained for

the monatomic gas will be found for all quantities that contain polynomials in ci alone. This follows from the fact
that integration over the e variable can be taken first and independently from the ci integration. Therefore, Eqs. (6a)
and (6b), and consequently (12a) and (12b), are fully recovered. The same conclusion also applies to the first term in

the quantity (mc2/2 -t- e) and therefore (6c) is replaced by

0 0

o_(p < c2/2 > +n < e >) + b-_k (p < ckc2/2 > +,_ <cke >) = O. (15)

Substitution of the central moments (7)-(11) into (15) reproduces all of the previous algebra for the monatomic gas
and leeds to

]O--t p e + + peint + _xk puk e + + Pkiui + qk + (n < Ck_ > +pukeint) = 0, (16)

where the definition < e >= meint has been used. Therefore (12c) also continues to hold provided we replace (10) by

e = (< C_/2 > +e.,,) (17)

and the definition of the heat flux vector (11) by

qi = p < CiC2/2 > +n < Cie > . (18)

We therefore conclude that the complete collection of equations (5), (6) and (12) can be used as they stand, provided

definitions (17) and (18) are employed when the gas possesses internal structure, and a state of equilibrium exists
between the internal modes and the translational degrees of freedom (see [20], p. 326).

Because the conservation equations (12) can be developed for any general fluid through use of phenomenological

arguments alone, the set is actually more general than the kinetic theory derivation would indicate, i.e., they are also
the conservation equations for fluid dynamics. However, we are only interested in treating an ideal gas flow and the
use of the kinetic theory approach is necessary because it shows that the set is valid for any degree of translational

nonequilibrium, that is, for any translational velocity distribution function one cares to consider. If one chooses the

equilibrium distribution, namely the Maxwellian distribution fM_, then the set becomes the Euler equations, because

viscous stress and heat flux are identically zero for fM,,,:. This step allows one, in effect, to reproduce the special

case considered by Pullin [15] in his equilibrium flux method (EFM), as well as the work by Mandal & Deshpande

[12], on kinetic flux-vector splitting (KFVS) for the Euler equations. The inviscid limit of the recent work by Mallett

et al. [11] is also recovered by this step. If one chooses a Chapman-Enskog (CE) distribution fc_, then the set

becomes the Navier-Stokes equations, because stress and heat flux are then given by the corresponding Chapman-
Enskog expressions. This is the path that we will follow in developing a KFVS scheme for the NS equations. One
may also choose a discrete representation for _ and the equations still hold. This is an alternate interpretation of the

concept that lies behind the state vector splitting scheme for the Navier-Stokes equations introduced by Gooch [8].
The most important point is that one is free to choose any translational velocity distribution function whatsoever in

using Eqs. (5), (6) or (12); and in so doing, the set becomes closed, as long as f is fully specified. Otherwise, if f
remains general, then one is faced with the well-known closure problem, when using a moment method, because rij
and qi are then unknown quantities in the equations. It is useful to emphasize the fact that the conservation equations

as displayed in (12) are not the NS equations until one introduces fc_.
Each of the five separate moment equations'represented by either (5), (6) or (12) can be expressed by the single

form



OU c3Fk (19)
a-5-+ =o.

The complete specification of Fi in three dimensions, as defined by (19), requires the evaluation of 15 quantities. But
the task is made considerably simpler, if one considers a finite volume scheme, uses Gauss' divergence theorem, and

writes Eq. (19) as

N UdV + Fads = 0, (20)

where S encloses the volume V and F, is the projection of Fi onto the unit outward pointing normal for the surface
element dS. If V is taken to be a rectangular volume, then one only needs to evaluate five quantities for each planar

surface, a conceptually simpler task provided Fn can be evaluated directly. Using the notation of (5), we then have

,Nv (21)U=n<Q >

and

INV

F. = n < c,,Q >, (22)

where U is the state vector, F,, is the total flux vector, and c,_ is the component of the molecular velocity normal to

the planar surface. Equation (22) clearly represents a physical concept. This can be seen from the fact that Q is a
scalar quantity which is carried across the fixed surface by ca, thus creating a physical flux in that quantity.

The five fluxes defined by (22) are total fluxes, not the one-sided fluxes depicted in Fig. 2. In addition, these general
expressions contain both the inviscid fluxes as well as the nonequilibrium components due to viscous stress and heat

flux, as can be seen from the corresponding terms in (12). Because many quantities evaluate to zero in arriving at the
set (12), and these cannot be recovered in a simple way, one must use the more primitive set (5), or (6), in developing

the algebra for the one-sided, kinetic-split fluxes.

III. KINETIC SPLIT FLUXES

As seen in Fig. 2, we are interested in expressions for the
frame of reference. On this basis and on considering the xl
follows

.... cldc2dc3 =
O0 O0 O0 O0 O0

:/?/?
O_ O0

one-sided fluxes based on a fixed interface and an inertial

direction as positive, we can split the integration in cl as

(;2 ?)1 "_- { .... }dCldC2dC3,
Ul

(23)

where the second expression introduces the thermal velocity components Ci. The concept of a kinetic split flux has a

long history in kinetic theory and a clear application to an equilibrium flow can be found in a textbook by Patterson

(Ref. [13], pp. 163-167). On using the following notation to represent the splitting in (23)

F = F- + F +, (24)

and on introducing a Cartesian coordinate system (n, tl, t2) located in an arbitrary fixed planar surface, we obtain

from (22), (23) and (24) the definitions

/?/?F; = n (Ca + un)Q'NvfdCndCtldCt2 (25)

???F + = n (Ca + un)Q"VVfdCr_dCtldCt_
(30 O0 ttn

(26)

These relations provide the means for computing Fn when f is a known function.
Because the total fluxes are known from the terms in (12), explicit expressions for each of the collisional invariants

given by (14) need only be listed for, say, F +. It is also useful to introduce a more physically descriptive notation {'or

the split fluxes as follows.



??FF+_o = f dCndCtldCt2
O0 _ It n

(27)

F_u_ =p+ (Ca + u.)fdCndCtldCt2
O0 0(9 Un

(28)

I L I_F + = p (Ca + un)2fdC,_dCtldCt2
rt -- rrt o rr t

oo oo ttn

(29)

F£?Fh+.... = p (C. + u_)(Ct_ + u_)fdC.dCt_dG_ (30)

Fi_-o._a_+ = P (C_ + _.) [(C. + _.)_ + (C,_ + u,,) 2+ (c,2 + ut_)_]
O0 O0 ttn

1

x -_fdCndCtldCt2
(31)

/?? +
F+int-eneray = n (Ca + Un)efdOndCtldCt2de = AqEucker , + pune+a

O0 _ U n

(32)

F+ gy = F+__,_gy + F+t__,_gy. (33)

Integration over the e variable is not shown in Eqs. (27)-(31) because it can be carried out as an independent operation
and done first. However, it does appear explicitly in (32), and this equation must be included when a gas has internal
structure. The role played by (32) can be seen from the fact that the Cne term in the integrand is the source of the

second term in (18), while the u_e term is the source of the second term in (17). The difficulty in applying (32) results
from the fact that we need an explicit expression for the joint distribution f(Ci, e) in order to evaluate these split

fluxes; and this lack of knowledge is indicated by the notation employed following the second equality. However, in
the case of the total eint, it is given by (13) since our model assume equilibrium for the internal degrees of freedom.
Likewise, for the total flux represented by Aq_,ok,., we can use the Eucken model which replaces < C,_e > by a

quantity that is proportional to the temperature gradient, thus making it proportional to the heat flux vector (see

[22], p. 66]). The net effect changes the value of the coefficient of thermal conductivity, as well as the Prandtl number,
from that for a simple gas to the proper values for a gas with internal structure. This then allows one to use the
same basic relations found for a simple gas. We will use the Eucken approximation and represent the incremental

contribution to the heat flux due to the internal degrees of freedom by

+ = -K"VT.Aqs.¢k.. = Aq_uok°. + AqE.ok.. (34)

These steps alone, however, still do not answer the question of how one evaluates the split fluxes appearing in (32).
This will be done after we have completed the implementation of the Eucken model.

The extra quantity F+_o is also listed because it defines how the velocity distribution function itself is split, which
is needed in the overall algebra. This can be seen from the normalization condition F_e,-o = F_o + F+_o = 1 for a

probability distribution. The expression for Ft+_,nom is not listed because it can be gotten by merely interchanging
tl and t2 in (30). For a monatomic gas, the set of equations is very general and applies for any velocity distribution
function one cares to define, for example, even for a discrete distribution. For a polyatomic gas, the set is not quite

as general and is limited by the Eucken model and the approximations to be introduced below. Our interest is in the
Chapmann-Enskog distribution and the resulting split fluxes.

IV. CHAPMAN-ENSKOG SPLIT FLUXES

A gas flow that is in thermodynamic equilibrium is represented locally by a Maxwellian distribution, and a gas flow

that is slightly disturbed from the equilibrium state is represented locally by the Chapman-Enskog distribution. The



CE distribution is obtained as an approximate solution of the Boltzmann equation (for a simple gas) and is expressed

as a product of a local Maxwellian and a polynomial function of the thermal velocity components Ci, that is, by the
relation

C E h4 ax

f ---- f (1 + ¢1 + ¢2) (35)

where

IMo== ( RT)-31 (_C2/2RT)

¢, = -- (I¢" Ck (CUSRT--1)
1 2

Ozk )

and where K °) is the coefficient of thermal conductivity and /jo) the coefficient of viscosity as determined by the

first-order Chapmann-Enskog procedure, and 5jk the Kronecker delta. Because both the temperature gradient and

the velocity-gradient tensor appear as parameters in fc_, notational efficiency can be gained in the algebra that

follows by replacing those quantities by the Chapman-Enskog expressions for stress and heat flux, i.e., by

qCE ----_K (') 0T
0xl (36)

TiCE=#m {bui Ouj_ 2 (_, (auk_sij. (37)

At this point we face a logical difficulty. Must we fix the Prandtl number to the value for a simple gas (Pv =

°)cplK °) 2/3) or may we allow it to vary so that (36) becomes consistent with the Eucken approximation?# =
As there is no simple answer, we will defer the question to the point in the analysis where logical conflicts can be

more easily identified. On substituting (35) into Eqs. (27)-(31) and using the same orthogonat coordinate system

(n, tl, t2), we see that in each case the integrand becomes a product of polynomials in the thermal velocities Ci and

the Maxwellian distribution fM_,_. The only difficulty that appears in carrying out the integration is the large number

of terms that are produced. For example, ¢1 and ¢2 are composed of 4 and 9 terms, respectively, and therefore (35)
leads to a total of 14 terms. On evaluating F + alone, we are faced with 252 terms. This at first appears to

tr--energy

be an overwhelming task, until it is noticed that many of the terms are zero, because in the Ctl and Ct2 variables all

odd moments of the symmetric function f_:= are zero and even moments are well-known functions of _RT. Likewise,

integration in the C, component can be handled by splitting the integration into -u_ to 0 + 0 to c¢ which then
leads to exponential and error functions (see [3], p. 417). Because the collection of functions is small, there is hope
the results can be finally assembled into fairly compact expressions. Even though the details are daunting, Patterson

(Ref: [13], p. 77) used a method he reports was "initiated by Maxwell and developed by Chapman" to develop
general expressions for the total fluxes, for the case of nonisentropic flow, which employs concepts and algebra very
similar to that employed here. Our interest, however, is in obtaining the split fluxes for which many more terms
must be handled. To carry out the present study, intensive use of symbolic mathematical manipulations, provided

by MATHEMATICA, was made in handling the algebra. Only the final collected integrated results will be presented
here. A discussion of the detailed steps required to obtain the following relations can be found in [6].

F_.o = _± 1 [(1 + oq) + oc-,(S,_',i cE + (2S 2 - 1){CE)] (38)

F_<_._ px/-R-T-_ [(1 4- al)S,-, -4-62 (1 - Xl)] (39)

F__,_om =p [(1 =1=oq)(S_-t-1(1- 7"CE))-i-_2 (S.-t-_CE)] (40)

± [s.Fm%,] + lp [_(1 += +F_l_mo m ^CE (41)



(42)

1 (5- [RrF:o.]= (AqE.=k.. + =Fi___._ pu.C._) _ \ -y- 1 ] (43)

where

• ± ± 5=
F_n_gu += F_r_energy Fint-energy,

1 _s _

oq = erf(Sn), o_2 = -_e "
F

l_cE]xl =/soC +
2 n- ]I.

[5 c_ ^CE St_r;,t2)]_ = [_q. - (sn_%_ + st_ + _ ]

[ - - ]
sn = _/v_-_, s '_= s_ + s?, + s__

÷fE : vfE /p, oCE : ZqCE /(p 2x/2X/2X/2X/2X/2X/_)"
O

(44)

Each individual component of Si, rij and qi is not listed, as they are clearly nondimensionalized the same way.
Equations (38)-(42) are not outwardly affected by the physics associated with additional internal degrees of freedom,

i.e., 7 # 5/3. In view of this, these equations should not contain 7 explicitly, when expressed appropriately. This is

easily done by introducing the speed ratio S = u/x/-2--R-T, which is frequently used in kinetic theory, as opposed to

the Mach number, which requires the introduction of 7 through the isentropic speed of sound. Use of the speed ratio
S not only provides a useful physical check on the mathematical results, it also allows the final expressions to be

written in a more compact form. On the other hand, the physical concepts that lead to (43) directly involve additional
internal degrees of freedom and the relation should contain 7 explicitly, which is seen in the expression that follows
the second equality, a step to be explained in the following discussion.

It is appropriate to review several consistency checks on Eqs. (38)-(43). First, the total fluxes (24) should agree
with the corresponding expressions in (12). Starting with (38), we have F_ero = 1, which is the correct normalization
condition for a probability distribution. From (39)-(43), we have

Fm,,,= pu, (45)

CE

Fn-.,o., = pu_ + p -- ,,,,, (46)

CE

Ftl-mom -_ punutl -- "rntl (47)

CE CE CE CE

Ftr-energy = DUn RT + +pun- rnn Un + rntl Utl + Tnt2ut2 + q_, (48)

1 (5- 37_
Fint-_n_au = (AqE,ok°, + puneint) = "_ \ 7 -- 1 ,1 pun.

(49)

These correspond to all the expressions in (12) for the orthogonal coordinated system used. Equation (49) provides
both the extra term required by (17) as well as the extra term required by (18). However, this returns us to the

logical difficulty raised in the discussion following (36) and (37). If the Eucken approximation is introduced when first

using (36), then its effect will appear twice when summing (48) and (49), i.e., in the combination (qCE + AqE.oko_).

Knowing this, one approach would be to introduce the Eucken approximation here by absorbing Aq_.oko" into the
CE

term qn by using Eq. (34). Although it appears to be a reasonable step, it is in fact a bold step, because split fluxes

are required in (42) and (43) and one cannot be sure that when the Eucken approximation is introduced into X_ and



X3 in (42) that it will properly account for the absorption of the split quantities Aq_uo_o" in (43). Consequently, one

may encounter incorrect energy split fluxes at an interface or a boundary. Actually, we have no alternative, as we do

not have f(Ci, e) with which to compute these split quantities. In the following development, we will use the Eucken

approximation throughout and assume that proper accounting is made for Aq_,=k," by X2 and X3.

An additional assumption is actually needed to complete the specification of (43), and this involves the evaluation

of 4- which again requires knowledge of f(Ci e). Assuming the Eucken model properly accounts for the correlationein t ,

Aqs,o_" = n < Cne > then it may be permissible to employ the equilibrium assumption to approximate elm.4- The

assumption that the internal energy modes are in equilibrium, both internally and with the translational degrees of

freedom, leads to the conclusion that Ci and e are statistically independent random variables, and therefore, f(Ci, _)

reduces to a product function. On this basis 4-ein t can be evaluated, and this step leads to the expression following

the second equality in (43). However, we should note that if the same assumption were used to evaluate < C,,c > as

well, then we would have Aq_.ok." = n < C,e >= n < C,_ >< e >= 0 because < C,_ >= 0 by definition; and this

would lead to the loss of the Eucken approximation. In summary, on combining (42) and (43), our approach consists

4- into and by the introduction of the Eucken approximation and using the equilibriumof absorbing A%uok°. X2 X3

assumption to evaluate 4- • this leads to the second expression in (43) as well as the second expression in (49).elnt,

A second check leads to the requirement that one should recover the known values for the Maxwellian distribution

^CE _CEwhen setting the nonequilibrium parameters v and to zero.

4- _ (50)FL,o = (1 + _1)

F.%mom = p [O ± _,) (S_ + _) + _S_] (52)

4-F_ i _ m orn ---- (53)

4- [ 5 (2+s2)]F,...... _ = pv/-2-f_ (1 + _,)s.(_ +s_) + _ (54)

+ 1 (5-3"/'_[RTF_ ] " (55)

These expressions are in full agreement with results obtained by Patterson (Ref. [13], Section 5.3, equations (4), (11),

(17) and (19)) where his objective was to compute the momentum and energy exchange at a surface for an equilibrium

gas. These relations were later introduced in work by Pullin [15] (for one-dimensional flow) and more recently by

Mandal &: Deshpande [12] and by Mallett et al. [11].

Finally, on setting the fluid velocities to zero (S = 0, al = 0, a2 = 1/_/¥), one must recover the well-known kinetic

theory values for a stationary equilibrium distribution (Maxwellian)

4-FL_o = 1/2 (56)

± +pV-ff_2- (57)t F_as$

Fn__rnom = p/2 (58)

4- (59)F_l_,,,o,,, =0

F4- - +p 2x/7--_l.
tr--er_ergy --

(60)



1(5-F,., ..... = + (61)k, 7-1]

The first five relations clearly agree with known values in kinetic theory, while the final relation is based on several
critical assumptions as discussed above.

^ CE ^CE

The importance of the nonequilibrium parameters rik and qk in Eqs. (39)-(44) can be judged by comparison with
equivalent Euler split fluxes. Of interest in a comparison are the Steger-Warming split fluxes [17] and the equilibrium

values given by (51)-(55). Obviously, the nonequilibrium parameters are not constants in a flow, but in a graphical
display representative values are quite useful, and a representative peak value for both parameters in a moderately

strong normal shock wave is roughly -0.3. This value along with 7 = 1.4 and the assumption of a one-dimensional
flow were used to develop Fig. 3, which presents the momentum and energy split fluxes versus the local Mach number
for three cases: KFVS for the NS equations given by (40) and (44); KFVS for the Euler equations given by (52) and

the sum of (54) and (55); and Steger-Warming splitting. On the scale shown, the results for the equilibrium values
and Steger-Warming group fairly closely together (a comparison apparently first made by Mandal and Deshpande
[12]), while the present work shows considerable difference, especially in the asymmetrical shift seen in F + and F-.
The figure clearly point to the fact that in a hybrid solution, where the one-sided fluxes are to be matched at an

interface having nonequilibrium conditions, the present kinetic split fluxes mus,t be used. This is because one does not
otherwise know how to adjust the Euler split fluxes, to account for viscous and heat conduction effects, even though
the total fluxes are known from (12).

V. BOUNDARY CONDITIONS

When a nonreacting particle in the DSMC method passes through a body surface during a time step, the procedure

is to emit the same particle from the surface with a new velocity depending on the boundary conditions. Thus, the
DSMC method effectively treats a solid boundary as though it too consists of a gas, but at different conditions. This
concept was clearly described by Patterson (Ref. [13], p. 165) and used in his analysis of molecular interactions with
boundaries. Because the same particle is emitted, the wall gas is identically the same gas, and therefore the two share

the same molecular mass and gas constant. Also, because every particle passing through a body surface is treated
this way, the number of particles per unit time per unit area passing into a wall is exactly balanced by the rate of
emission. However, this condition does not tell us what the number density of the wall gas is, i.e., it does not fix nw,

or Pw, for the wall gas, nor does it fix the temperature of the wall gas Tto. What we do know is that the total mass
flux must be zero at a material surface, i.e.

(F,_,8,),_./,ce = (F+_8,)g + (F,_,,,)_ = 0, (62)

where gas and wall positions, consistent with the end-wall geometry shown in Fig. 2, are assumed. Generally speaking,
in the DSMC method one often assumes that the wall gas is in equilibrium and the wall is stationary. On this basis,

Eq. (57) can be used in (62) to describe the wall gas, and we can Write

(F+,,,)g = Pw_/2_. (63)

A particularly simple boundary condition is the case where the wail temperature Tw is specified, namely, an
isothermal boundary condition; and for this case, Eq. (63) fixes the density of the wall gas pw, since (F+a,_)g would

be known from (39) and the state of the gas from the update procedure for the numerical solution of the NS equations.
Given p_, Tw and p_, -- p_,RT_,, we then have on using (58) the relation

(F.-mom)8,,rf.ce = (F+-mo,_)g + p,_/2, (64)

which fixes the normal stress at the surface, since (F+_mo,.)g likewise represents a known quantity from (40) and the

update procedure. Likewise, on using (59), we have

= (65)

which determines the tangential stress on the surface. Finally, the energy flux to the surfaces is found by using (60)

and (61) together with (44) and the state of the gas from the update procedure, i.e.

=(F;,e_gy)g-p_,_ 1+_ \_)j,
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whichcompletesthespecificationof theconditionsat asurfacefor anisothermalwall.Themostimportantoutcome
fromthisanalysisisthatthetemperatureofthegasnearthesurfacemaynotbeequaltothespecifiedwalltemperature
To, which gives rise to the possibility of temperature slip. Likewise, the tangential velocity near the surface may not
be zero, leading to velocity slip; however, the normal velocity near the surface must be zero because the expressions

in (62) also define the fluid velocities for the two separate gases.
For an adiabatic boundary condition, we know that the total energy flux to the surface is zero, while the wall gas

temperature and density are unknown. Thus, we have

(Fen_rg_)s_rI°.= (F+,erg_)_+ (F/.erg_)_= o, (67)

and on using (60) and (61) for the wall gas, we have

+ [ 1 (5- 37_1 (68)(F;,_e_gu)g=p,o_ 1+-_ k. 7-1 ]] '

which along with (63) provides two equations in the two unknowns p_, and T_,, since (F+,8_)g and (F+,_rgy)g are
both known from the update procedure at each time step. Likewise, the normal stress on the surface can be obtained

using (58) and the tangential stress using (59), completing the analysis.
The application of flux boundary conditions to the wide variety of possible boundary conditions is quite straight-

forward and only two are given here. For example, accommodation coefficients for momentum and energy are often
used in the application of the DSMC method, and it would be a simple matter to include them as well. In addition,
analytical results for both temperature slip and velocity slip can be obtained from Eqs. (62)-(68) and these can be

shown to reproduce the special case considered by Patterson (Ref. [13], Section 4.4, equations (30)-(33)). A detailed
discussion of this topic will be covered in a follow-on report.

VI. NUMERICAL COMPARISONS

Our main objective is to show that the derived expressions for the split kinetic fluxes given by Eqs. (39)-(44), together
with the flux boundary conditions, lead to valid solutions of the NS equations. For this purpose, comparisons are

made with first-order schemes by Stager & Warming [17] and Roe [16], while second-order comparisons are made with
the symmetric limited positive second-order (SLIP2) scheme reported by Tatsumi, Martinelli & Jameson [18]. Central

differencing was used in each of these cases to handle the terms introduced by viscous stress and heat flux. A version
of the monotone upstream-centered scheme for conservation laws (MUSCL), van Leer [19], was used in applying the
KFVS relations for the NS equations. The parameters chosen in using MUSCL are defined in the following relations

where

Fi MUSCL (69)

uiL+½ = U, + _minmod [AUi_½,flAUi+½]

= -
AU/+½ = Ui+I - Ui

a if lal<_lbl & ab>Ominmod(a,b) -- b if lal > Ibl _ ab > o
0 if ab < 0

and where the L/R arrangement is defined in Fig. 4. A first-order scheme is obtained for 01 = 0 and a second-order
scheme for 01 = 1. Most of the work was carried out for fl = 1.5. The function F+(uL), for example, represents any

one of the equations (39), (40), (41) or (44). These equations contain spatial derivatives of U as well, and the concept
of the function must be generalized to include them. For a problem with one spatial dimension, the update formula

(first-order in time) is then given by

At (FMUSC L FMUSCL'_ n (70)U;'+_ = U[' - A--7_ _+_ - '-_ / '
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wheren representsthetimestep.
Theproblemof determiningtheprofilefor a normalshockwaverepresentsa steadyflowfor whichviscousstress

andheatconductionareveryimportant;andthisrepresentsanextremelimit thatprovidesappropriateconditionsfor
testing.Althoughit iswellknownthat theNSequationsdonotgivephysicallyrealisticprofilepredictionsforstrong
shockwaves,weareonlyinterestedin establishingthatvalidNSsolutionsarebeingobtained.Forthispurpose,we
havethemethodsuggestedbyyonMises[21]andbyGilbarg& Paolucci[7]for solvingtheNSequationsforsteady
one-dimensionalflow,whichcanbeusedasastandardof comparison.To obtaina reliablereference,a four-step
Runge-Kuttamethodand1200pointsin thedomainof integrationwereused.Theprimaryintegrationtakesplace
in acomputationalspacewherethefluidvelocityis theindependentvariableand,becausethenormalstressandthe
heatfluxvariablesseemto showthegreatestnumericalsensitivity,thesewereselectedfor display.Figures5 and6
giveresultsfor a shock-waveMachnumberof 1.5andair asa representativegas.First-orderschemesfor KFVS,
Steger-WarmingandRoearecomparedwith thereferencesolution(solidcurve)in Fig.5;andit isclearthat Roe's
schemecomparesthebest,withSteger-WarmingexhibitingthefamiliartransitionnearthesonicstationandKFVS
showingonlymoderatesuccess.Second-orderschemesconsistingof KFVSandJameson'sSLIP2,alongwith the
referencesolution,arecomparedin Fig.6;andit isclearthatit is notpossibleto distinguishbetweenthem.Higher
Machnumberswerealsostudiedandthesamegeneralobservationsweremade.

In thesamespirit of reviewingextremeconditions,it is appropriateto considera flowthat correspondsto the
Eulerlimit, namely,ashock-tubeflow. Becauseofthepresenceof thecontactsurface,it ismostusefulto display
thedensityandtemperaturevariablesastheyfrequentlyexhibitlargechangesthere.Figs.7and8presentresultsfor
pressureratios(driverto drivengas)of 3and20,respectively,andwheretheflowis fromleft to right.Startingfrom
theleft,thetransitionsseenaretheexpansionfan,thecontactsurface,andtheshockwave.Weseethatthereisgood
agreementbetweensecond-orderKFVSandSLIP2,withthelargestdifferenceat thecontactsurface,possiblyaresult
of thedifferentlimitersused.Roe'sfirst-orderschemeclearlyshowssevereroundingof theprofiles.Theseparation
distancebetweentheshockwaveandthecontactsurfacegrowslinearlywithtimeandthereforetherelativerounding
of thecornerswouldappearto diminishwith increasingtime. An earlytimewasspecificallychosenfor displayto
emphasizetherelativedifferencebetweenthedifferentschemes.

In both theidealshock-tubeandshock-waveproblemssolidboundariesareabsent.However,the case of an
impulsively started piston is an example where nonequilibrium effects near a solid boundary can lead to temperature

slip. Figure 9 shows an expanded view of the thermal layer near an isothermal piston, where the piston Mach
number is taken to be unity and the gas is ideal and monatomic, and it is clear that the gas temperature near
the piston is higher than the piston temperature, as a result of the flux type (DSMC) boundary conditions used in

solving the problem. A theoretical expression for temperature slip in a slightly rarefied flow of a monatomic gas
was developed by Patterson [13] (see equation (33), p. 125) and his prediction is shown by the circle symbol. The
excellent agreement seen undoubtedly results from the fact that Petterson's theory makes use of the assumptions in

NS, and therefore, boundary conditions (62)-(68) used in the numerical solution and the analytical approach used by
Patterson correspond closely. A necessary next step, of course, is to carry out comparisons with DSMC simulations
to determine the conditions under which the magnitude of the jump is physically correct. This study, which requires
careful discussion, will be presented in a follow-on report. The most important observation is that the method

introduces slip into the NS formulation in a very natural way through the use of flux boundary conditions.
A final problem to be reviewed is the steady, two-dimensional flow produced by a plate sliding across the open end

of a square cavity, and for which the temperatures of all four material surfaces are held fixed and equal. This is a

well-known problem for which the NS solution, based on the no-slip boundary condition, leads to singular behavior
of the shearing stress, in the two corners defined by the slider plate and the box walls [1]. Because of the shearing
motion of the plate, work is done on the fluid, it induces a circulation inside the box, and the fluid is heated as

a result of viscous dissipation. However, because of the isothermal walls, heat is conducted out of the gas, and a
steady state is reached after a long time has passed. The velocity field shown in Fig. 10 provides an intuitive physical
understanding of the flow generated by the sliding plate, which is on top and moves from right to left in the view
shown. The computational domain was covered by 64×64 square cells, the plate Mach number was set to 1.0, the

Knudsen number (based on the cavity dimension) was set at 0.005, and the gas was assumed to be air at ambient

conditions. One of the more interesting results from the solution is the temperature distribution in the box, which
is shown in Fig. 11. The dimensionless wall temperature is unity in the figure. If no-slip were present, then the
dimensionless gas temperature would also be unity everywhere along the surface, but it can be seen that a significant
jump occurs around a great portion of the cavity walls. The same situation develops for the two components of

velocity. Figure 12 displays the velocity component parallel to the slider plate (near face) which is moving left to right
in the view shown. If no-slip were present, then the dimensionless gas velocity would be unity (negative) over the

length of the plate and zero everywhere else on the box boundary. As can be seen, a significant jump in velocity occurs
over the entire plate and, as a result, it appears to suppress the singular behavior of the stress in the two corners.

Although the edge-values displayed are actually the values at the midpoints of the cells bordering the walls and one

12



must find the true wall values from extrapolation, the correction is modest and our observations remain unchanged.

The small ripples seen in the Fig. 12 are believed to be small vortices that are not fully resolved by the grid used.

VII. CONCLUDING REMARKS

Our work has been guided by the interest in developing a hybrid method using DSMC and NS, where the focus

here was limited to a method for handling the NS portion. An Euler scheme introduced by Pullin [15] and further

developed by Mandal &_ Deshpande [12] and by Mallett et al. [11], was generalized through use of kinetic-theory

concepts to cover the NS equations, and second-order solutions were shown to compare well with established second-

order numerical schemes for the NS equations. Because matching must take place in the near-continuum regime,

where both DSMC and NS are valid, the NS portion must account for slip at solid boundaries. Use of the kinetic

split fluxes was shown to lead to a very natural implementation of DSMC type boundary conditions, and these led

to the appearance of slip. Likewise, use of the kinetic split fluxes at an interface between DSMC and NS in a hybrid

solution is also expected to be necessary in order to model the correct physics in a aonequilibrium flow, especially

when determining the inputs to the DSMC portion. In view of this, the equation set (39)-(44), representing KFVS

for the NS equations, is clearly needed in interfacing with DSMC and in applying boundary conditions at a solid

surface for the NS portion of a hybrid solution. However, the added step of also using a KFVS scheme for the NS

solution itself is not an absolute requirement, as one could argue that any numerical solution of the NS equations

would be acceptable, as long as these kinetic split fluxes were used in applying all boundary conditions. Because the

DSMC portion is normally expected to take the greater computation time in most problems, one does not need to

pick a numerical scheme for the NS portion that minimizes time, and therefore, computation time is not an issue.

This allows one to choose a numerical scheme that offers the greatest compatibility with DSMC, which we believe to

be the KFVS scheme for the NS equations. On the other hand, in obtaining the data for Figs. 7 and 8, it was found

that KFVS and Jameson's SLIP2 required virtually the same computation time. Whether this continues to hold for

higher spatial dimensions is unknown.
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APPENDIX B

A Numerical Study Comparing Kinetic Flux-Vector Splitting for the Navier-Stokes

Equations with a Particle Method

T. Lou, D. Dahlby and D. Baganoff

Department o] Aeronautics and Astronautics

Stan]ord University, Stan]ord, CA 94305

(Submitted to: Journal of Computational Physics, April 30, 1996)

Numerical solutions based on the method of kinetic flux-vector splitting (KFVS) for the Navier-

Stokes equations are compared with the direct simulation Monte Carlo method (DSMC) for tln'ee

problems: an impulsively started piston, which emphasizes heat flux; an impulsively started flat

plate, which emphasizes shearing stress; and a plate sliding past a square cavity, or the lid-driven

cavity problem, which combines both stress and heat flux. Taking the view that the DSMC method

provides the correct physical description near material boundaries, the comparisons, which were

carried out for the conditions of a slightly rarefied flow, show good agreement for temperature and

velocity slip, and in the prediction of the kinetic split fluxes, verifying the assumptions and the

approach taken in the KFVS method.

I. INTRODUCTION

The theoretical development for the method of kinetic flux-vector splitting (KFVS) for the Navier-Stokes equations

was introduced in Ref. [4], which represents an extension of work initiated by Deshpande for the Euler equations

[6,7]. Additionally, it was shown to give good agreement with established numerical schemes for the Navier-Stokes

equations. Boundary conditions based on the new split fluxes and the kinetic theory were also developed and shown

to predict slip at a material surface, as a gas becomes rarefied. However, confirmation for the magnitude of the

predicted slip and the conditions under which the correct predictions are found were not fully explored. Also not

given was support for the use of a critical approximation, based on the Eucken model, which was introduced to carry

out the flux-splitting for energy, in the case of a gas having internal structure. The objective of the present work is

to provide the appropriate analysis by comparing the predictions of the theory presented in [4] with the results of

simulations carried out with the direct simulation Monte Carlo (DSMC) method [2,3], a method of simulation where

a large collection of particles is used to model a rarefied gas flow. Of course, the comparisons can only be carried

out in the near-continuum regime where the computational cost for the DSMC method does not become prohibitive.

Likewise, for the NS equations to hold, the flow can only be slightly rarefied and the magnitudes of stress and heat

flux must lie in a range where the occurrence of slip near a solid surface represents the principal modification to the

fluid physics. However, these conditions are wholly consistent with the objective in [4], where the KFVS method

was introduced as the continuum counterpart to the DSMC method in an eventual construction of a hybrid scheme

combining the two.

The version of the DSMC method used in this study [1,8] divides space into uniform cubical cells. These cells

are used to identify which particle pairs are candidates for collision during a time step and to compute cell-averaged

macroscopic quantities at the end of a time step. In general terms, the DSMC method is expected to give reliable

results when the local mean free path length is large compared with the cell dimension. Particular experience with

the case of Couette flow has shown that good agreement for viscous stress and heat flux is obtained between DSMC

and NS when the cell Knudsen number is greater than unity, and progressively more modest agreement is found as

it is made smaller [5]. In our comparisons, the local cell Knudsen number appearing in the DSMC simulations was

set at unity or greater for the most dense parts of each flow. The molecular model chosen for the simulations was

the hard-sphere molecule, for which the transport coefficients vary as the square root of the temperature. In the case

of a diatomic gas, the vibrational mode was not excited, while the rotational degrees of freedom were set to be in

equilibrium with the translational degrees of freedom, by setting the so-called collision number to unity. In the DSMC

simulation/this leads to the ideal diatomic gas for which _/= 7/5.

Two issues are addressed in this study: (i) in the case of a simple gas, the theory in [4] is rather securely founded,

and therefore, the primary question relates to whether the magnitude of the predicted slip, for the particular flow

conditions considered, is in agreement with results obtained from DSMC simulations; and (ii) in the case of a gas with

internal structure, the flux splitting employed in [4] is based on the Eucken approximation, which directly affects the

predicted split energy fluxes, and the particular approximation used requires confirmation, especially at an isothermal

material surface where nonequilibrium effects may be quite large. These questions will be investigated by studying

the highly nonequilibrium flow produced near material surfaces for three problems: an impulsively started piston,



which emphasizes heat flux; an impulsively started flat plate, which emphasizes shearing stress; and a plate sliding

past a square cavity, or the lid-driven cavity problem, which combines both stress and heat flux.

II. THE KFVS EQUATIONS

The split kinetic fluxes for the Navier-Stokes equations are given by equations (39)-(44) in Ref. [4] and these are

reproduced for use here, where the notation employed is the same, and they read:

:t=F:,o. = pv/-_ [(i + _,)s. + _2(i- x,)] (i)

F__mom = p [(1 :t: c_i)($2+ 2(1- _.CE))+32 (S_+ 0CE)] (2)

+F£, .... _ [St, 4- 1= FmL.] + _p [-(1 ± _1)÷£f ± _0_ _] (3)

F;__o_o_9_= px/-ffT_ (I± _,) s.( + s_)+ x_ + _ (2+ s_+ x_) (4)

i(5- [RTFm%,,] (5)
= (Aqz.ok°, , 2 \_]Fint-eaergy ="

+ = F, + + (6)

where

1 -s_
_,: _f(X_), _ = _

[x_= s;,_. +2"_J

[5 ^c_ _cs ]_--- Tnt 1

[X3 = St,qtl -4- St24t2 -- X1 -- rnn

s. = _./vf_, s _-= s_. + s_, + sh

:rCE CE -CS _qCE /(px/_-R-_)=r/m /P, qn =

qCE = _i(. u) O.___T
Oxi

hj = \ Oxj + o_ ] - 3_ \ o_k,I

A Cartesian coordinates system is assumed in the above equations, with the normal direction represented by n, and the

two tangential directions by tl and t2. The dimensionless velocity S (speed ratio) determines the two parameters a,
and c_, while the dimensionless, Chapman-Enskog expressions for stress _cE and heat flux _ncE are the nonequilibrium

factors in the quantities Xt, X2 and g3. The sign convention employed assumes the positive split flux F + points in
the direction of increasing n, and is directed out of a surface enclosing a body of gas. The convention for F- is based

on the splitting F = F + + F-, where F is the total flux, and therefore it often evaluates to a negative value. The
corresponding expression for F__mo m is not listed as it can be inferred from (3).

Extreme nonequilibrium conditions in a gas are found near isothermal boundaries, where the one-sided fluxes are

large, and these provide special conditions for detailed study. The relations developed for an isothermal boundary are
given by equations (63)-(66) in Ref. [4] and these are also listed below, where again the same notation is followed.

(F+o,,)_= p,,,RV2_/2,_, (7)



= (p2 o.,)g+ w/2, (8)

(F,l_,.,o,,,),t,.<oc.= (P+.... )o, (9)

+ p__rl 1 (5 - 37"_1(F_,-,e,.gy),,.,,-S<,c_ = - I. + t " (lO)

In the above relations, the state of the gas near a surface is denoted by subscript g, while the state of the hypothetical

wall gas is denoted by subscript w. These relations were developed in [4] using DSMC type boundary conditions for
a nonreacting gas, in which the wall can be viewed as a hypothetical gas at conditions determined by the particular
boundary conditions employed. In this case, the wall gas is the same gas because of the assumed nonreacting
interaction between gas molecules. Likewise, the sign convention assumed in the boundary conditions (7)-(10) is one
where a positive flux points in the direction of positive n, when viewed from the position of the gas at an interface
with a wall.

III. IMPULSIVELY STARTED PISTON

The interest in an impulsively started piston is associated with the fact that the heat transfer rate to an isothermal

piston can be very high at early time, leading to large nonequilibrium effects. On the other hand, the impulsive
start requires special attention, as will be seen. Because it is not obvious from the structure of Eqs. (7)-(10) how
the condition of zero slip is recovered in the continuum limit, and because DSMC simulations become overly costly
in this limit, it is desirable to further develop the theoretical expressions so that comparisons can be more readily
assessed. The continuum limit is obtained for co.nditions of high pressure and large time when the boundary layer is
relatively thick in relation to the local mean free path length; and for the one-dimensional geometry of an impulsively

started piston, where the tl and t2 coordinates are ignored, this leads to small values of the surviving dimensionless
derivatives _ and _CE with ^cE ^CE, V,_,, (( q_ . For calculational purposes, it is easier to consider a moving gas and a
stationary piston, and therefore, at the piston surface it is appropriate to set the speed ratio to zero, i.e. S,_ = 0, and

thus, al = 0 and a2 -- 1/x/_. On using (1) to represent the gas near a surface and on using boundary condition (7),
the following relations between the conditions in the gas flow and the hypothetical wall-gas values are obtained

P___g
2 "" Jp,_

P---_g(1--1_CE'_ =_T _ (11)

where p = pRT is used for both the gas flow and the hypothetical wall gas. When Eqs. (4)-(6) are substituted into
boundary condition (10) and on making use of (11) we obtain, for the total energy flux at the surface, the relation

(12)

The definition for the total energy flux in the coordinate system for which Sn = 0 simplifies to the relation

-- qn , and consequently, the above equation reduces to

2"'_ ]T-g-g =1-5v/-_ _ q'_ - -_ \-_--_ ] vgn '
(13)

For an isothermal piston, heat conduction represents the dominant effect at large time, and therefore, the above
equation can be approximated, for _.c_ _< 1, by

T_,Tg-- 1 - (_-+-T)7- 1 (5x/_0cE -I-/.c_) , (14)

which shows that the gas temperature near the surface Tg approaches the wall temperature Tw, as the magnitudes of the

nonequilibrium parameters become smaller and smaller in approaching the continuum limit (because of increasing p).



Likewise,for positiveheatflux(intothewall)thegastemperatureisgreaterthanthewalltemperature(temperature
slip).Anequivalentslipcondition,forthecaseofslightlyrarefiedflowofamonatomicgas,wasobtainedbyPatterson
[9]andit iseasyto showthatEq.(14)fullyagreeswithPatterson'sresult(cf.equation(33),p. 125).Thisagreement
is foundonsetting3' = 5/3, Prandtl number = 2/3, and then approximating (14) for the inverted ratio Tg/Tw.
Additionally, it has been shown by Shidlovskiy [10], again for the case of a monatomic gas, that inclusion of the

thermal accommodation coefficient a introduces a factor (2- a)/a multiplying the heat flux term (cf. equation (3.16),
p. 67). Equation (14) was developed here for two purposes: to show that the KFVS formulation (1)-(6) and the
associated boundary conditions (7)-(10) agree with related work, and to introduce the extension to the case of a
polyatomic gas.

Returning to the more descriptive view, where the gas and piston are both stationary and at one temperature
before the start of the motion, then the larger the piston velocity after the impulsive start the larger the Mach
number associated with the shock wave produced, and the greater the changes in density and temperature across

the gas layer formed near the piston. When one employs the NS (continuum) point of view, then a discontinuity
appears at the wall in both the temperature and the fluid velocity at time t = 0+, and the corresponding heat flux
and normal stress are infinite, and this occurs even for low values of the piston velocity. Clearly, the NS equations

do not predict the correct physical process at very early time. This raises the interesting question, for this nonsteady
problem, whether a numerical solution of the NS equations for large time would be independent of developments at
early time.

Because Eq. (14) is an analytic result and does not depend explicitly on time, it can be used to qualify a numerical
solution of the NS equations, because one would expect (14) to provide the correct NS prediction as a numerical
solution is sequentially improved. The need for a reliable numerical check is the principal reason why the temperature

ratio in (14) was not inverted, to correspond more directly to Patterson's expression. On using the variables defined
by Eq. (14), the analytical relation plots as a straight line, which is shown as a heavy dashed line in Fig. 1 (note:
q/pc = 5q/x/_). The four numerical solutions shown in the figure were carried out for the case of a monatomic gas
and a piston Mach number of unity (Mshock = 1.869), using a second-order finite-volume scheme (first-order time)

together with a range of cell sizes (see Ref. [4] for identification of the scheme used). Time appears as a parameter
along each curve, with large time corresponding to small values of the abscissa. The physical scale is set by the values
of the undisturbed density p0, speed of sound co, coefficient of viscosity _u0, and cell length Ax. These quantities can be
used to either define a reference cell Reynolds number or a reference cell Knudsen number through the kinetic-theory,
hard-sphere relation

57r -
= 57pc_, (15)

where G' = 8X,/_-_/rr is the mean thermal speed and A is the mean free path length. Because we are interested in
comparisons with DSMC, it is physically more meaningful to use a reference cell Knudsen number, Kno = Ao/Ax,

with _ = x/A0, {= tC0/A0, and

= AtOo/AxKno = _f-_7(CFn/Kn)o, (16)
A{

as measures of the physical scale. In Fig. 1 the numerical solutions are shown for Kno = 2, 4, 8, 16 and we see that the

largest value is needed to get good agreement with (14). Because the gas density near the piston surface is nearly four
times the undisturbed density (see Fig. 3), this translates into Kn_,au _ 4 and therefore we must have Ax < A_au/4
to obtain a reliable NS solution at early time. The conditions near t = 0+ necessitated the use of a very small A{.

This led to the use of values of CFL ranging from 0.15 to 0.0375 as the Knudsen number was increased. At this point

we do not know whether the range of the independent variable displayed in Fig. 1 corresponds to conditions where the
NS system predicts the correct physics, only that the values employed are required for a consistent numerical solution
of the NS equations.

In turning to a DSMC simulation, it is clear that the same reference cell Knudsen number, Kno = 16, should
initially be Used in making a comparison. Figure 2 shows such a comparison for two times: a time at which the shock
wave and the thermal layer are both still forming, { = 4.64 (1,600 time steps NS, 400 DSMC); and the time at which

they just begin to separate, t" = 11.6 (4,000 time steps NS, 1,000 DSMC). Numerical instability with NS at early time
necessitated a smaller time step (factor of 4) than that used with DSMC. The dimensionless time employed is based
on the collision time in the reference state and so these times are truly short. At the early time the temperature
profiles match somewhat poorly overall, while at the later time the thermal layers, alone, begin to match rather well.

Because density is a less sensitive variable, the match at both times is surprisingly good, considering the extremely
short time represented. Because the DSMC method is computationally intensive, it was necessary to increase the
values of A{ and Ax by a factor of 4, and decrease the value of Kno by the same factor, to study still larger time.



Figure3 makesthesamecomparisonaftertheshockwaveandthethermallayerhaveclearlyseparated,t = 46.4

(16,000 time steps NS; 1,000 DSMC), and it is seen that agreement is very good, except at the shock front itself, for
which it is well known that NS gives a poor prediction for shock-wave profile.

The inherent statistical fluctuations which are characteristic of the DSMC method, especially for a nonsteady

problem for which extended time averaging is not possible, do not allow for a detailed study of small differences
represented by the temperature slip seen in Figs. 2 and 3. Nevertheless, in Fig. 4 we attempt to make a comparison of

the time dependent temperature slip at the piston surface for the two methods. In this case, the DSMC results were
time averaged over a small local interval about each plotted point to reduce statistical scatter. These simulations
were carried out with a number density of approximately 8,000 particle per cell near the piston surface and roughly
one million particles for the entire simulation. DSMC results were obtained for Kno = 4, 8, 16, 32 by sequentially

reducing the cell size by a factor of 2 while holding A0 fixed. These data include the runs shown in Figs. 2 and 3, and
likewise, are for the same conditions. Because of the varying cell size, it would be necessary to extrapolate the data
for each run to the position of the piston surface in order to produce a consistent display, but this approach amplifies
statistical scatter and proves impractical for such a time-dependent simulation with DSMC. The alternative was to

select the center position of the largest DSMC cell (Kno = 4) as the reference and display the data for all runs for

that position. This approach has the added feature that it provides a consistency check on the DSMC method itself.
As seen in Fig. 4, the DSMC data overlap nicely, demonstrating that convergence has been obtained. Two curves are
shown for the NS calculation: the dashed curve was obtained by extrapolating the data to the piston surface; and

the solid curve represents the value at the center position of the largest cell used in the DSMC method (Kno = 4).
For the NS calculation, the cell size for Kno = 16 was used. The separation between the two curves shows that the

temperature gradient near the piston surface is very steep necessitating the use of a small cell size. In view of the
different curves displayed, the solid curve for NS should be compared with the DSMC data, which appears to suggests
that the boundary conditions (7)-(11) for NS over predict the temperature slip for these conditions. For large time

the two should agree fully, but it did not appear feasible to extend the DSMC runs to verify this with the computer
workstation employed in this part of the study. When considering the fact that the NS equations are not expected
to represent the correct physics for large nonequilibrum (for example, q/pc > 0.1 for t < 50, see Figs. 1 and 4), the

agreement seen in Figs. 2-4 is very encouraging, since it confirms the accepted view that slip conditions at a surface
represent the principal corrections needed to be added to the NS system when dealing with a slightly rarefied flow.

If any discrepancy exists between the values of the split kinetic fluxes defined by Eqs. (1)-(6) and the corresponding
values from DSMC simulations, then the differences should be seen at the piston surface where nonequilibrium is

the greatest. Fig. 5 presents the corresponding comparisons for the mass and energy split fluxes, and shows that

the agreement, for a monatomic gas, is extremely good. In the DSMC simulations the positive split fluxes were
obtained by monitoring the passage of individual particles as they left the gas and crossed the piston surface, while
the negative split fluxes were obtained by monitoring the particle emission from the piston surface introduced by
the DSMC boundary conditions. For the NS solution, the state of the flow from the numerical solution was used

to evaluate the positive split fluxes using the defining equations (1)-(6). Similarly, the conditions representing the

isothermal piston were used to compute the negative split fluxes.
In the case of a polyatomic gas, the Eucken approximation was introduced in [4] to develop the split fluxes for

energy; and it is of interest to determine whether the particular approximation used is supported by DSMC. The
same simulations were repeated for the case of an ideal diatomic gas, assuming rotational degrees of freedom are in

equilibrium with translation (7 = 7/5), and a comparison of split fluxes for momentum and energy is shown in Fig. 6.
The excellent agreement seen confirms that the Eucken approximation, as implemented in [4], is capturing the proper
physics in the splitting of energy flux, for both the translational and rotational components.

IV. IMPULSIVELY STARTED FLAT PLATE

Viscous stress becomes the dominant nonequilibrium effect for an impulsively started flat plate, which provides
an alternate environment for comparison. For the one-dimensional geometry of an infinite, impulsively started flat

isothermal plate moving parallel to its surface in, say, the tl direction, the tl and t2 coordinates may be disregarded
' _CE q, , become the principalin (1)-(6); and the shearing stress r_tl, along with the normal heat-flux component _cE

nonequilibrium quantities. Again, for calculationM purposes it is easier to consider a moving gas and a stationary
plate. At the plate surface we may then set S,_ = 0 and thus o_1 = 0 and a2 = 1/v_. On using Eq. (1) to represent

the gas near the plate and on using boundary condition (7), exactly the same density and temperature relations are
found as for the impulsively started piston, given by (11).

On using (1) and (3) to represent the gas near a stationary surface, in which we set _CE to zero because of uniformity,

and on using boundary condition (9), we find



(17)

Thedefinitionforthetotalfluxoftransversemomentumleadstothesubstitution(Ftl-mom)surlac_= -v,_tl,because
.9, = 0. On solving for St1, we then obtain the relation

1 -1
V_ _:CEh ^CE7"_t1 .s,1 = --y- i - _ .. ] (18)

The quantity St1 represents the dimensionless velocity of the fluid next to a stationary surface, i.e., velocity slip.

Although Eq. (18) does not depend directly on the value of the ratio of specific heats 7, if the velocity slip is based on
the reference plate speed Up,ate, and a plate Mach number Mp_ate is introduced, then the factor v_/2 is replaced by

X/"_/Mplate and the 7 dependence becomes evident. Here again, if we neglect -CEv_, then the above relation can be

shown to agree fully with Patterson's result [9] for velocity slip (cf. equation (31), p. 125). If boundary condition (10)
is handled in the same way as for the piston, and if the quadratic terms Stir, t1 and S_1 are dropped, then exactly
the same relation for the temperature slip as for the impulsively started piston is gotten, i.e., Eq. (14).

Just as for the case of the impulsively started piston, Eq. (18) can be used to qualify a numerical solution of the

NS equations for an impulsively started flat plate. Except for a greater sensitivity to the impulsive start, which
requires the use of still smaller time steps as the reference cell Knudsen number is increased, the conclusions drawn
are essentially the same as those found in the study that led to the data presented in Fig. 1, and will not be repeated.

Likewise, in order to emphasize nonequilibrium effects, an isothermal plate and a Mach number of unity were selected
as appropriate conditions for study.

Using the more descriptive frame of reference where the gas is initially stationary and the plate is given an impulsive
start, NS and DSMC results for velocity are displayed and compared in Fig. 7, at the dimensionless times { = 12.4

and t = 68.0. As can be seen, even though the velocity slip is fairly large at these short times, the NS solution
compares extremely well with the DSMC results. In Fig. 8 the gas velocity at the surface of the plate is displayed as
a function of time, showing that it approaches the plate velocity asymptotically. The DSMC results were obtained
for Kno = 4 and 8; and data for both runs were plotted for the location corresponding to the center position of the

largest cell, Kno -- 4. The complete overlap of the symbols clearly demonstrates consistency, or convergence, in the
DSMC results. In the case of the NS solution, the data for Kno -- 12 were used and extrapolated to the plate surface

(dashed curve); the data were also evaluated at the center position of the largest cell (solid curve) used in the DSMC
simulations. As the gradient near the plate is more modest here, the agreement is sufficiently close that one does
not have to distinguish between the different curves. Equation (18) shows that the magnitude of _.CE is virtually the

same as the slip (1 - u/up_at_) seen in the figure. Therefore, the degree of nonequilibirum is quite large, yet the NS
prediction for velocity slip agrees very nicely with DSMC for these rather extreme conditions.

Continuing with comparisons for the split kinetic fluxes evaluated at the plate surface, Fig. 9 presents the results for
the case of a monatomic gas, and the agreement seen is remarkably good. Likewise, Fig. 10 presents the split fluxes
for a diatomic gas, showing equally good agreement. These quantities are displayed for a frame of reference where

the gas is initially stationary and the plate is given an impulsive start. Therefore, asymptotic results deduced from

Eq. (1)-(6) must be transformed to obtain the limiting values seen in Figs. 9 and 10. Beyond the excellent comparisons
seen; the most important observation relates to the component quantities making up the energy split fluxes for the
diatomic gas. It is clear that the translational and rotational degrees of freedom are being properly handled, and

therefore, the approach used in Ref. [4], in introducing the Eucken approximation, appears to be working well.

V. LID-DRIVEN CAVITY FLOW

In the two cases studied above, heat flux and viscous stress were separately dominant; but both can become

important in the lid-driven cavity problem, and an element of complexity is added by the two dimensions of the flow.
However, focus will be placed on the steady-state condition for which the CFL restriction should not be as severe as
for the case of an impulsive start. Here again, it is useful to assume isothermal surfaces to produce a large degree

of nonequilibrium. On the other hand, the lid Mach number was set to Mud = 0.5 so that nonequilibrium effects
in the corners for steady state would not be unduly large. The reference Knudsen number, based on the dimension

of the square cavity L, and defined by Kn L = Ao/L, was set equal to 0.01, where A0 is the mean free path length
evaluated at the wall temperature and the initial state of the gas. The value of the Knudsen number was chosen so
as to correspond to the near-continuum regime where NS is expected to be valid and the DSMC simulation does not
become overly intensive. In the following, discussion will be limited to the case of a diatomic gas, as the monatomic

case has been adequately covered above.



A steadystate,two-dimensionalNSsolution,basedona 128x 128squaremesh,ispresentedinFig.11showingthe
componentof velocitylyingparallelto the lid. In thefigure,thelid isonthenearfaceandmovesfromleft to right,
forwhichthevelocityisdefinedto benegative.Theeffectofvelocityslipisclearlyseen,bothonthelid itselfandat
thetwocornersformedby thelid andwalls.Noslipwouldcorrespondto themagnitudeof thedimensionlessfluid
velocityu/co being equal to the lid Mach number, in this case 0.5. The view shown is useful in serving as a mental

aid in presenting the comparisons to be reviewed below. For example, in the views that follow, the lid together with
the two faces on either side will be unwrapped and displayed in planar form when various boundary quantities are

compared.
In order to judge the validity of the numerical solution presented in Fig. 11, analytical relations similar to Eqs. (14)

and (18) are needed. Using a coordinate system where n is taken to be perpendicular to the lid, tl is parallel to
the lid and t2 ignorable, then at various points along the lid one would expect the stresses rnClE and TeE and the

heat flux components qCE and qCE to be important. On this basis the slip relations found above may have to be
generalized. When the algebra leading to (11) is repeated using St, = 0 alone, exactly the same relations are found

A slight generalization to (18) is required, given by

1 -1s,1=- 1-2../ [-7-"" (19)

which introduces the heat flux component aligned with the lid, a quantity that may be important in the corners.

More terms must be retained in the generalization of (13), for the temperature slip, which becomes

1 lf:CE_ Ttu --- 7- I 3"7--1

+2 [s. + + . (2o)

In developing Eq. (20), the coordinate system in which the gas is moving and the wall is stationary was again used.
Therefore, a transformation must be introduced when (20) is used to analyze the moving lid. Because of the complexity

of (19) and (20), the approach employed in Fig. 1 is less useful here. Here too, Eqs. (19) and (20) can be shown to

reduce to Patterson's results [9].
In the coordinate system defined by Fig. 11, the velocity component u lies parallel to the lid while the velocity

component v lies parallel to the two faces on either side of the lid. Therefore, if we unwrap the adjacent faces and
display the tangential velocity along the surface as a function of the surface position for the NS solution, we obtain
the function seen in the top view of Fig. 12, shown as a solid curve. This function contains both u and v and is not
merely a copy of the edge values for u shown in Fig. 11. The corresponding theoretical prediction is given by Eq. (19)
and is shown as the heavy dotted curve (a transformation must be applied to (19) to obtain the values along the lid).

It is clear that agreement is only found outside the two corner regions. This can be understood by reviewing the plot
shown in the bottom view of the figure, which gives the normal velocity component S,_ as a function of s. Equation

(19) was derived on the basis of the assumption S,_ = 0 and it is clear from the plot for S',_ that the assumption does
not hold in the two corners. Therefore, use of Eq. (19) as a check on the validity of the numerical solution obtained
must be confined to areas near s = 0.5, 1.5, 2.5; and this check clearly shows that reliable numerical results were in
fact obtained.

Practical considerations made it necessary to limit the DSMC simulation to a 64 x 64 array of cells. Past experience
with the DSMC method for a steady state problem led to the decision to use an average number density of approx-

imately 64 particles per cell, leading to a total of roughly 0.25 x 106 particles employed in the simulation. Roughly
12,000 time steps were used in the time averaging of the data which gave a sample size for each cell of approximately
0.75 x 106. In this case it was more appropriate to run the simulation on a parallel supercomputer, which required a
total of 116 node-hours to carry out the comparisons. The top view of Fig. 13 .compares the NS solution against DSMC

results for the tangential velocity versus the surface position. In each case the data were projected to the position of
the surface for comparison. As can be seen, the correspondence is quite complete, even including sharp spikes in the
two corners. Consequently, the NS prediction for the slip velocity is quite outstanding for these conditions. Because of
the low Mach number chosen, Mtia = 0.5, the temperature rise is fairly small (less than 5%) and the DSMC data for

temperature exhibit considerable statistical scatter, as is seen in the bottom view in the figure, and a fully equivalent

judgment concerning the NS temperature slip, DSMC results, and Eq. (20) cannot be made.
Because the wall temperature is specified for an isothermal wall, the NS solution only controls the density of the

hypothetical wall gas p,o (see Eq. (11)). Furthermore, because the emission from the wall is controlled by a Maxwellian
distribution in the particular application (isothermal wall) of the KFVS method being considered, the split fluxes

directed out of the wall are not overly sensitive to the NS solution. Thus, it makes sense to focus attention on the



split fluxes directed out of the gas and into the wall. Figure 14 gives a comparison for this single component of the

two kinetic split fluxes for energy, where the upper set is for the translational energy component and the lower set is

for the rotational energy component. As seen, the NS predictions compare extremely well with the DSMC results,

including the excursions in the two corners. Likewise, the good match for rotational energy shows that the form of the

Eucken approximation employed in the development of the KFVS method proves to be valid even for these conditions.

Although prediction of the values of the fluid variables at the lid and walls represents a more severe test of the

KFVS theory than that for the interior regions of the lid-driven cavity problem, it is also of interest to consider

one comparison for the entire flow. Figure 15 displays the v-component of velocity for a number of transverse slices

positioned along the x axis. The NS solution is given by the solid curves and the DSMC results by the symbols,

likewise showing good agreement between the two.

VI. CONCLUDING REMARKS

The method of kinetic flux-vector splitting for the Navier-Stokes equations was introduced primarily as the contin-

uum counterpart to the DSMC method in the eventual development of a hybrid scheme [4]. A principal requirement

in joining the two methods at a fluid interface is the presence of compatible split fluxes. Because NS is not valid

in rarefied flow and the use of the DSMC method becomes overly costly in the deep continuum, matching must be

carried out in the near-continuum where the flow is only slightly rarefied, a degree of rarefaction which may be defined

as the regime where the local cell Knudsen number is of order unity. These conditions were considered in selecting

the test conditions reported above and very good agreement was found for the split fluxes in the two schemes, even

for the extreme nonequilibrium conditions found near isothermal surfaces, conditions surely more severe than those

found at most any other interface located within the flow. Because the split fluxes for mass and momentum do not

depend on 7, it is certainly expected that one would obtain equally good results for monatomic and diatomic gasses

for these quantities. However, the split fluxes for energy clearly depend on the additional internal energy carried by

polyatomic molecules, and for this case it was necessary to make use of a particular interpretation of the Eucken

model to carry out the splitting (see Ref. [4]). Therefore, comparisons such as those seen in Figs. 10 and 14 prove

to be of great value in justifying the assumptions made. Beyond the fact that the split fluxes defined in KFVS and

DSMC have been shown to agree remarkable well, which is an important step in the development of a hybrid scheme,

it was also shown that the slip conditions for temperature and velocity at a material surface also agreed quite well.

This is also a significant result because the flow is fully expected to be slightly rarefied near a material surface for

most conditions for which a hybrid scheme would be employed.
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FIG. 2. Gas temperature and density ahead of an isothermal piston (located at _ = 0) for NS (sofid curves) and DSMC

(symbols), at two early times in the formation of the shock wave and the thermal layer, for Mv,_ton = 1 and 7 = 5/3.

Dimensionless times correspond to t = 4.64 and t = 11.6.
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projected to the piston surface (dashed curve); same solution was evaluated at cell center for the largest DSMC cell (solid

curve).
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FIG. 11. Variation of the u-component of velocity for the NS solution to the lid-driven cavity problem. Lid velocity is from

left to right on the near face, with Mtia = 0.5 and 7 = 7/5.
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FIG. 12. Tangential and normal velocities at the surface of the lid and cavity for the NS solution. Upper view: numerical

solution of the NS equations (solid curve) and the theoretical expression, Eq. (19), for the tangential velocity ut/co (dotted

curve). Lower view: velocity component normal to the surface of the cavity, S,,, for the NS solution.
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